Chapitre 9 : continuité Annexe sur la démonstration du théorème des valeurs intermédiaires

Valentin Melot — Terminale spé maths A Complément au cours des 24 mars 2021

L'objectif de ce document est de présenter une démonstration complète du théorème des valeurs intermédiaires, ici rappelé.

Théorème 1 (théorème des valeurs intermédiaires — essentiel) Soit f une fonction continue sur un intervalle [a,b]. Soit c un réel compris entre f(a) et f(b). Alors l'équation f(x) = c admet une solution dans [a,b].

La démonstration est une démonstration « constructive », c'est-à-dire qu'elle consiste à donner un procédé explicite qui permet d'approcher la valeur d'une solution.

Préalable : se ramener à un cas simplifié

On supposera dans le cas présent que $f(a) \leq f(b)$. On démontrera à la fin comment les autres cas peuvent être traités à partir de celui-ci.

Heuristique : le principe de la démonstration

L'idée est de chercher à encadrer une solution (non nécessairement unique), en se donnant une suite $(u_n)_{n\in\mathbb{N}}$ et une suite $(v_n)_{n\in\mathbb{N}}$ dont on est sûrs que :

- Elles convergent;
- Elles ont la même limite;
- Pour tout $n \in \mathbb{N}$, $f(u_n) \leq c \leq f(v_n)$.

Leur limite commune, que l'on appelle x, sera alors la solution recherchée.

Dans la construction proposée, on fera en sorte que pour tout $n \in \mathbb{N}$,

$$u_n \leqslant x \leqslant v_n$$
.

Cependant, on ne peut pas travailler avec le nombre x, dont on ne connaît pas encore l'existence. Cela constitue la principale difficulté de la démonstration.

Étape 1 : construction des suites considérées par récurrence

On construit les suites par l'algorithme suivant :

- Pour n = 0, on pose $u_0 = a$ et $v_0 = b$.
- Une fois u_n et v_n construits, on pose $m_n = \frac{u_n + v_n}{2}$. On compare $f(m_n)$ avec c, puis :
 - Si $f(m_n) \ge c$, alors on pose $v_{n+1} = m_n$, et $u_{n+1} = u_n \dots$
 - Si $f(m_n) \leqslant c$, alors on pose $u_{n+1} = m_n$ et $v_{n+1} = v_n$.

Étape 2 : preuve de la convergence des suites considérées

On démontre par récurrence le lemme suivant :

Lemme 2 Pour tout $n \in \mathbb{N}$,

$$a \leqslant u_n \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n \leqslant b.$$

Pour $n \in \mathbb{N}$, on pose \mathcal{H}_n la proposition « le théorème est vrai au rang n ».

- Au rang n = 0, on a $u_0 = a$, $v_0 = b$, et donc $u_0 \le v_0$. On en déduit que $u_0 \le m_0 \le v_0$. Or, on a soit $(u_1, v_1) = (m_0, v_0)$, soit $(u_1, v_1) = (u_0, m_0)$. Dans tous les cas, \mathcal{H}_0 est vraie.
- Supposons \mathcal{H}_n vraie, pour un certain $n \in \mathbb{N}$. On a alors en particulier :

$$a \leqslant u_{n+1} \leqslant v_{n+1} \leqslant b$$
.

Il en résulte en particulier que $u_{n+1} \leqslant m_{n+1} \leqslant v_{n+1}$. Or, soit $(u_{n+2}, v_{n+2}) = (m_{n+1}, v_{n+1})$; soit $(u_{n+2}, v_{n+2}) = (u_{n+1}, m_{n+1})$. Dans tous les cas \mathcal{H}_{n+1} est vraie.

— Par récurrence, pour tout $n \in \mathbb{N}$, \mathcal{H}_n est vraie, ce qui prouve le lemme.

On en déduit que $(u_n)_{n \in \mathbb{N}}$ est une suite croissante majorée par b, donc convergente. Elle possède donc une certaine limite α .

De même, $(v_n)_{n\in\mathbb{N}}$ est une suite décroissante minorée, donc convergente. Elle possède donc une certaine limite β .

Étape 3 : preuve de l'égalité des limites

On démontre le résultat suivant :

Lemme 3 Pour tout $n \in \mathbb{N}$,

$$v_{n+1} - u_{n+1} \leqslant \frac{v_n - u_n}{2}.$$

En effet, pour $n \in \mathbb{N}$, en fonction de la valeur de $f(m_n)$,

— Ou bien $u_{n+1} = u_n$ et $v_{n+1} = m_n = \frac{u_n + v_n}{2}$. Alors

$$v_{n+1} - u_{n+1} = \frac{u_n + v_n}{2} - u_n = \frac{v_n - u_n}{2}.$$

— Ou bien $u_{n+1} = m_n = \frac{u_n + v_n}{2}$ et $v_{n+1} = v_n$, donc

$$v_{n+1} - u_{n+1} = v_n - \frac{u_n + v_n}{2} = \frac{v_n - u_n}{2}.$$

Ce qui prouve le lemme.

Dès lors, la suite $(v_n - u_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison $\frac{1}{2}$. Il en résulte que cette suite est une suite convergente, de limite 0.

En outre, par différence de limites, la suite $(v_n - u_n)_{n \in \mathbb{N}}$ a pour limite $\beta - \alpha$.

Donc par unicité de la limite, $\beta - \alpha = 0$, soit $\alpha = \beta$.

On peut donc désormais poser $x = \alpha = \beta$. On va démontrer que ce réel x, qui existe, est bien une solution du problème.

Étape 4 : preuve du fait que x est bien une solution

On démontre par récurrence le résultat suivant :

Lemme 4 Pour tout $n \in \mathbb{N}$,

$$f(u_n) \leqslant c \leqslant f(v_n).$$

Pour $n \in \mathbb{N}$, posons \mathscr{I}_n la proposition : « $f(u_n) \leqslant c \leqslant f(v_n)$ ».

- Pour $n=0,\ u_0=a$ et $v_0=b.$ La proposition \mathscr{I}_0 est vraie par hypothèse sur c.
- Supposons \mathscr{I}_n vraie pour un certain $n \in \mathbb{N}$. Alors, en fonction de la valeur de $f(m_n)$:
 - Ou bien $f(m_n) \ge c$. Alors $v_{n+1} = m_n$ et $u_{n+1} = u_n$, donc

$$f(u_{n+1}) = f(u_n) \leqslant c \leqslant f(v_{n+1}) = f(m_n).$$

— Ou bien $f(m_n) \leq c$. Alors $u_{n+1} = m_n$ et $v_{n+1} = v_n$, donc

$$f(u_{n+1}) = f(m_n) \leqslant c \leqslant f(v_{n+1}) = f(v_n).$$

Dans tous les cas, \mathscr{I}_{n+1} est vraie.

— Par récurrence, pour tout $n \in \mathbb{N}$, \mathscr{I}_n est vraie, ce qui prouve le lemme.

Or, la fonction f est continue sur [a, b]. Donc, d'après la caractérisation séquentielle, la suite $(f(u_n))_{n\in\mathbb{N}}$ converge et admet pour limite $f(\alpha) = f(x)$. De même, la suite $(f(v_n))_{n\in\mathbb{N}}$ converge et admet pour limite $f(\beta) = f(x)$.

Enfin, par passage à la limite dans l'inégalité du lemme, on a :

$$f(\alpha) \leqslant c \leqslant f(\beta).$$

Soit f(x) = c.

On a donc bien démontré le théorème des valeurs intermédiaires, dans le cas où $f(a) \le f(b)$.

Étape 5 : cas où f(a) > f(b)

L'ensemble de la démonstration précédente supposait $f(a) \leq f(b)$, hypothèse nécessaire pour initialiser la récurrence du lemme 4.

Supposons désormais qu'au contraire, f(a) > f(b). On pose g = -f. Alors g(a) < -c < g(b), donc d'après le cas traité précédemment, il existe $x \in [a,b]$ tel que g(x) = -c, c'est-à-dire f(x) = c, ce qui conclut.