Interrogation de cours 18 mars 2020 (Dix minutes)

Question 1 : soient x et y deux réels strictement positifs, et $n \in \mathbb{N}$. Exprimer les quantités suivantes en fonction de $\ln(x)$, de $\ln(y)$ et de la fonction exp : (1 point)

1.
$$\ln \frac{x}{y} =$$

2.
$$\ln(x^{-n}) =$$

3.
$$\ln(x^3y) =$$

4.
$$n^x =$$

Question 2 : soit u une fonction dérivable à valeurs dans \mathbb{R}_+^* . Donner la dérivée de la fonction $\ln(u)$. (1 point)

Question 3 : donner les valeurs des limites suivantes : (1 point)

1.
$$\lim_{x \to 0^+} \ln(x) =$$

$$2. \lim_{x \to +\infty} \ln(x) =$$

3.
$$\lim_{x \to 0^+} x \ln(x) =$$

$$4. \lim_{x \to +\infty} \frac{\ln(x)}{x} =$$

Question 4 : calculer la dérivée de la fonction \ln . On pourra admettre que cette fonction est dérivable sur \mathbf{R}_+^* . (2 points)

Interrogation de cours 18 mars 2020 (Dix minutes)

Question 1 : soient x et y deux réels strictement positifs, et $n \in \mathbb{N}$. Exprimer les quantités suivantes en fonction de $\ln(x)$, de $\ln(y)$ et de la fonction exp : (1 point)

1.
$$\ln \frac{x}{y} =$$

2.
$$\ln(x^{-n}) =$$

3.
$$\ln(x^3y) =$$

4.
$$n^x =$$

Question 2 : soit u une fonction dérivable à valeurs dans \mathbf{R}_+^* . Donner la dérivée de la fonction $\ln(u)$. (1 point)

Question 3 : donner les valeurs des limites suivantes : (1 point)

1.
$$\lim_{x \to 0^+} \ln(x) =$$

$$2. \lim_{x \to +\infty} \ln(x) =$$

3.
$$\lim_{x \to 0^+} x \ln(x) =$$

$$4. \lim_{x \to +\infty} \frac{\ln(x)}{x} =$$

Question 4 : calculer la dérivée de la fonction \ln . On pourra admettre que cette fonction est dérivable sur \mathbf{R}_+^* . (2 points)